
Math H104: Honors Introduction to Analysis Fall 2005

Lecture 1: August 30
Lecturer: Yuval Peres Scribe: Thomson Nguyen

Let Z be the set of all integers {0, 1,−1, 2,−2, . . .} and let N be the positive integers
{1, 2, 3, . . .}. Denote the rational numbers by Q = {a

b
: a, b ∈ Z and b 6= 0}. The ancient

Greeks already discovered that rational numbers are not sufficient to describe certain natural
geometrical quantities, such as the diagonal in a square of side 1.

Proposition 0.1.
√

2 /∈ Q. That is, for every a, b ∈ Z with b 6= 0, we have (a/b)2 6= 2.

Proof. Suppose (a/b)2 = 2 with a, b ∈ Z. We may assume that a, b > 0, otherwise we replace
a, b by their absolute values. We also may assume that we chose a solution with a minimal.
The equation a2 = 2b2 implies that a is even, and therefore a2 is divisible by 4. Consequently
b2 = a2/2 is even whence b is even. Therefore we can replace a and b by a/2 and b/2, and
obtain a smaller pair of integers where the ratio of their squares is 2. This contradicts the
minimality of a. �

The construction of the real numbers R can be done either via Dedekind cuts, or using
Cauchy sequences. A Dedekind cut A|B consists of a pair of disjoint nonempty sets
A,B ⊂ Q, such that A ∪ B = Q and a < b holds for all a ∈ A and b ∈ B. We also require
that A has no largest element.

A pertinent example of a Dedekind cut is A|B where

(1) A = {x ∈ Q : x < 0 or x2 < 2} and B = {x ∈ Q : x > 0 and x2 > 2}.
We will return to Dedekind cuts later.

Recall that a sequence {xn} converges to a limit L (in symbols, xn → L as n → ∞)
if for any ε > 0 there is an n0 ∈ N such that |xn − L| < ε for all n > n0. For now, focus
on xn, L, ε ∈ Q. This also applies to the next definition. However, these definitions will
apply more generally later. We need a more sophisticated definition that describes when the
members of a sequence are getting closer to each other without refering to any limit.

Definition 0.2. A sequence {xn}∞n=1 is a Cauchy sequence if for all (rational) ε > 0,
there exists an N such that m,n > N ⇒ |xm − xn| < ε.

For example, the sequence {3.1, 3.14, 3.141.3.1415, 3.14159, ...} where each time we add
another digit in the decimal expansion of π, is a Cauchy sequence. As we shall see later in
the course, π /∈ Q, so this sequence does not converge in Q. Similarly, if x2

n → 2, then {xn}
cannot converge to any rational L.

Problem 0.3 (Challenge). Find an explicit sequence {xn} ⊂ Q such that x2
n → 2 for all

xn > 0.

Following the preceding example, we can take x1 = 1.4, and xn = xn−1 + an

10n for n > 1,
where an is the largest integer a such that (xn−1+

a
10n )2 < 2. Then {xn} is a Cauchy sequence,

and x2
n → 2 as n→∞.
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2 Lecture 1: August 30

Here is an idea for a more insightful solution, motivated by a standard algorithm to
approximate square roots. Let

(2) x1 = 2 and xn =
1

2

(
xn−1 +

2

xn−1

)
for n > 1 .

By induction, xn ∈ Q for all n.

Problem 0.4 (Exercise). For the sequence in (2), check that xn+1 < xn for all n > 0 and
that the Cauchy property holds. Hint: Consider x2

n − 2.

To ensure that a sequence {yn} is Cauchy, it is not enough to verify that yn − yn−1 → 0
as n→∞.

Example 0.5. Consider Hn = 1+ 1
2
+ 1

3
+ · · ·+ 1

n
, so that Hn−Hn−1 = 1

n
→ 0. Nevertheless,

{Hn} is not a Cauchy sequence. To see this, take ε = 1/3, for instance. Given any N , we
must find m,n > N with |Hn −Hm| ≥ 1/3. Let m = N + 1 and n = 2m. Then

H2m −Hm =
1

m+ 1
+

1

m+ 2
+ . . .+

1

2m
≥ m

2m
=

1

2
.

We are done.

In the preceding example, the sequence Hn is not bounded.

Problem 0.6 (Exercise). • Show that every Cauchy sequence is bounded.
• Show that every convergent sequence is a Cauchy sequence.
• Find an example of a bounded sequence {yn} such that yn− yn−1 → 0 yet {yn} is not

a Cauchy sequence. Hint: Consider the distance from Hn to the nearest integer.

To define real numbers via Cauchy sequences, we must deal with the fact that many
different sequences might converge to the same limit.

Definition 0.7. Suppose {xn} and {yn} are Cauchy sequences of rational numbers. We say
that {xn} is equivalent to {yn}, and write {xn} ∼ {yn}, if xn − yn → 0.

Given a Cauchy sequence {xn} ⊂ Q, consider its equivalence class

{xn} = {all sequences {yn} such that {xn} ∼ {yn}} .
We can define a real number as such an equivalence class. To do so, and still think of Q
as a subset of R, we identify every rational number with the equivalence class of (Cauchy)
sequences converging to it.
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Lecture 2: September 01
Lecturer: Yuval Peres Scribe: Orie Shelef

1. Primes

Question: Show that there are infinitely many primes: 2,3,5,7,. . .
Proof (Euclid): Given any finite set of primes p1, . . . , pk, we construct another one. Consider
N = p1p2...pk + 1. This N must have some prime factor q (possibly q = N). Since N − 1
and N cannot both be divisible by q, it follows that q is different from p1, . . . pk.

Next, let P1, P2, P3, . . . be the ordered list of all primes:
Theorem (Euler)

∑∞
j=1

1
Pj

= ∞ We’ll prove this later.

This theorem shows that the sequence of all primes pj ”does not grow too fast”.
Amusing fact:

∑
1
P
< 5 where the sum is over all ”known primes”, that is those primes

that have ever been identified.

2. Construction of Real Numbers

Recall that a Dedekind Cut A|B satisfies the following conditions:

• A
⋃
B = Q;

• A
⋂
B = ∅;

• A 6= �, B 6= �;
• if a ∈ A and b ∈ B then a < b;
• A has no largest element: ∀a ∈ A, ∃a1 ∈ A : a1 > a.

There exist two types of cuts depending on whether B has a smallest element (Type 1) or
not (Type 2).

Examples:

• Type 1: A = {x ∈ Q : x < 3} and B = Q \ A = {x ∈ Q : x ≥ 3};
• Type 2: A = {x ∈ Q : x2 < 2 or x < 0} and B = Q \ A.

Type 1 cuts correspond to rational numbers. For any q ∈ Q we have a type 1 cut Aq|Bq

where Aq = {x ∈ Q : x < q} and Bq = {x ∈ Q : x ≥ q}; conversely, any type 1 cut can be
represented this way.

We can now define the sum of two cuts:

(A1|B1) + (A2|B2) = (A1 + A2|Q \ (A1 + A2))

where set operations are defined as A1 + A2 = {a1 + a2|a1 ∈ A1, a2 ∈ A2}.
3



3. Supremum and Infimum

Definition 3.1. (A1|B1) < (A2|B2) iff A1 ⊂ A2 and A1 6= A2.

Fact: (Check!) For any two distinct cuts (A1|B1) and (A2|B2), we have (A1|B1) < (A2|B2)
or (A2|B2) < (A1|B1), but not both.

If S is a set (in Q or in R) and x ∈ R (or Q) we say that x is an upper bound for s if s ≤ x
for all s ∈ S. We say that x0 ∈ R is the least upper bound of S, and write x0 = supS, if
x0 is an an upper bound for S, and for each upper bound x of S we have x ≥ x0. If S has
no upper bound then we write supS = ∞.

Similarly, define inf S = y0 if y0 is a lower bound for S and any lower bound y for S
satisfies y ≤ y0. if S has no lower bound then let inf S = −∞.
Note: S = {x ∈ Q : x2 < 2} has no supremum in Q. Why? Given an upper bound z ∈ Q
for S, we can always find a smaller upper bound. Given z2 > 2, we seek z1 ∈ Q such that
0 < z1 < z and z2

1 > 2.

• One suggestion: Consider xk = z− 2−k for k ∈ N. These xk are all rational, positive,
and xk < z for all k. Since z2 > 2 and xk → z we have x2

k > 2 for some k. That xk

will be our z1.
• A nicer suggestion: Take z1 = (z + 2/z)/2. Clearly 0 < z1 < z. We must check that
z2
1 > 2. Indeed z2

1 = (z2 +4/z2 +4)/4. This is strictly greater than 2 iff z2 +4/z2 > 4,
which is true since the left hand side minus the right hand side can be written as
(z − 2/z)2 > 0.

4. Key Property of R

Proposition 4.1. If S ∈ R has an upper bound then ∃ supS ∈ R.

Idea of Proof using Cuts: S is a collection of cuts. Let A∗ =
⋃

(A|B)∈S A and B∗ =⋂
(A|B)∈S B. Then (A∗|B∗) = supS. Check that indeed, (A∗|B∗) is a cut and satisfies the

definition of supremum.

5. Homework

Due Thursday, September 8th. From Book: 9, 15, 16(a)(b)(c) (Pages 41-44) And the
following:

Suppose x ∈ Q solves x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0 with ai ∈ Z. Show x ∈ Z.

Hint: This is an example of a monic polynomial (leading coefficient is 1) with integer co-
efficients. such polynomials have only integer or irrational solutions. Try simpler monic
polynomials first. x+a0 = 0 is too easy. x2 +a1x+a0 = 0 can be solved using the quadratic
formula. Then show that solutions of this equation are integer or irrational without the
quadratic formula and apply that method to the original question.
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Math H104: Honors Introduction to Analysis Fall 2005

Lecture 3: September 06
Lecturer: Yuval Peres Scribe: Cordelia Csar

Recursion

In Lecture 1, we discussed the recursion

x1 = 2, xn =
1

2

(
xn−1 +

2

xn−1

)
for n > 1

We claim that xk > xk+1 for all k ≥ 1 and x2
n → 2. Why? Let yn = x2

n − 2, which means
y2 = 1

4
. For all n > 1, we have

yn+1 = x2
n+1 − 2 =

1

4

(
xn +

2

xn

)2

− 2 =
y2

n

4x2
n

.

By induction, 1 ≤ xn ≤ 2 for all n. Therefore, yn ≤ 2, whence 0 < yn+1 ≤ y2
n

4
< yn. In

particular, yn ≤ 1
4

for all n ≥ 2. Furthermore, 0 < yn+1 ≤ yn

16
for n > 1. From above,

x2
n+1 < x2

n

xn+1 < xn for n > 1

Next note that {x2
n} is a Cauchy sequence, as any convergent sequence is a Cauchy sequence.

Convergence zn → L means that for all ε there exists n0 such that, for all n > n0, |zn−L| < ε.
Given ε, we can check that {zn} satisfies the Cauchy criterion by finding n0 such that
|zn − L| < ε

2
for all n > n0. This implies that, for all n,m > n0, we have |zn − zm| ≤ |zn −

L|+ |zm−L| < ε. Our sequence {xn} satisfies xn ≥ 1 so |xn−xm| =
|x2

n − x2
m|

xn + xm

≤ |x2
n−x2

m|,
which implies that {xn} is a Cauchy sequence.

Real Numbers

Definition 5.1. A set R̃ can be identified with the real numbers if it is totally ordered by
“<” and contains (a copy of) Q with its order and

{Dedekind cuts in Q} = {{x ∈ Q : x < r}|{x ∈ Q : x ≥ r}} for r ∈ R̃

Question 5.2. Why does R̃, defined as equivalence classes of Cauchy sequences, satisfy this?

Suppose r = {xn} ∈ R̃. Then define

Ar = {q ∈ Q : there exists q1 > q such thatq1 ≤ xn for all but finitely many n}

and Br = Q\Ar. To check that Ar and Br are well defined, (i.e., they depend only on r and
not on the chosen representative {xn}) we need to verify the following.
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Proposition 5.3. Let {xn} and {yn} be equivalent Cauchy sequences in Q. Then there
exists q1 > q such that q1 < xn for all but finitely many n, if and only if there exists q2 > q
such that q2 < yn for all but finitely many n.

Proof. ⇒ Given q1 with q1 < xn for all but finitely many n, take q2 =
q + q1

2
< q1. We wish to

show that yn > q2 for all but finitely many n. Since {xn} ∼ {yn}, we have |yn−xn| <
q1 − q

2
for all but finitely many n. The ⇐ argument is similar. �

To complete the equivalence, we need to, given a Dedekind cut A|B, construct an element

r ∈ R̃. We can do this in the following manner. Let x1 = largest element of
Z
10

in A, where

Z
10

= {. . . ,−.3,−.2,−.1, 0, .1, .2, .3, . . .}.

More generally, let xn = largest element of
Z

10n
in A. This keeps adding one addition digit

of precision. Finally, if r is the equivalence class of {xn}, one can check that Ar = A and
Br = B.
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Lecture 4: September 8
Lecturer: Yuval Peres Scribe: Stephen Bianchi

Chapter 1, Exercise 9(a)
Let A|B and Ã|B̃ be cuts in Q. We defined cut addition as

A|B + Ã|B̃ = (A+ Ã)|(Q \ (A+ Ã)).

We do this because if we were to define cut addition as

A|B + Ã|B̃ = (A+ Ã)|(B + B̃),

then we would not necessarily get a cut on the right hand side. For example, consider the
following cuts in Q,

A = {x <
√

2}, B = Q \ A

Ã = {x < 5−
√

2}, B̃ = Q \ Ã.
Then,

A+ Ã = {x ∈ Q : x < 5}

B + B̃ = {x̃ ∈ Q : x̃ > 5}
but

5 6∈ (A+ Ã) ∪ (B + B̃).

Question
Find x, y ∈ R \Q such that xy ∈ Q, or at least show that such and x and y exist.

One explicit solution is

elog 2 = 2.

But how do we know e and log 2 are irrational?

General solution:

First try z =
√

2
√

2
. If z ∈ Q then we are done. If z 6∈ Q then consider

z
√

2 = (
√

2)
√

2·
√

2 = 2.

So either z ∈ Q to begin with, or taking z
√

2 gives the solution. As it turns out, z 6∈ Q,
which is a special case of the Gelfond-Schneider theorem.

Going back to our explicit solution, we need to show that e and log 2 are irrational. To show
that e is irrational, we start with the following,

e−1 = 1− 1 +
1

2!
− 1

3!
+

1

4!
− 1

5!
+ · · ·

e = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!
+ · · ·

7



8 Lecture 4: September 8

Now suppose e = p
q

(p, q ∈ N). Then e−1 = q
p
, and p!e−1 ∈ Z.

If p is odd, then

p!e−1 = m+
p!

(p+ 1)!
− p!

(p+ 2)!
+ · · ·

If p is even, then

p!e−1 = m− p!

(p+ 1)!
+

p!

(p+ 2)!
− · · ·

Where m ∈ Z. The sum of the alternating series above is between m and m+ 1. That is,

m < p!e−1 < m+
p!

(p+ 1)!
= m+

1

p+ 1
< m+ 1.

Hence, m < p!e−1 < m+ 1, and p!e−1 can not be in Z.

Exercise
A warm-up exercise for showing log 2 6∈ Q is to show that log3 2 6∈ Q.

Cauchy Sequences
We have discussed the least upper bound property of R. Next, we want to use this to show
that Cauchy sequences in R converge (to a limit ∈ R).

Step 1: Any Cauchy sequence {xn} ∈ R is bounded.

Proof. Let ε = 1 in the definition of Cauchy sequence. Then

∃N : n,m > N =⇒ |xm − xn| < 1

If we take {x1, x2, . . . , xN} ∪ [xN+1 − 1, xN+1 + 1], then this set is bounded. Let’s say it is
bounded in the interval [−M,M ]. Then the sequence {xj}∞j=1 ⊂ [−M,M ]. �

Step 2: Any monotone, increasing, bounded sequence (a1 < a2 < . . . < an ≤ M , for all n)
converges. Take L = sup{aj}∞j=1, we claim an −→ L.

Proof. Given ε > 0, we know L− ε is not an upper bound for {aj}. This implies

∃k : n > k =⇒ an > L− ε =⇒ L− ε < an ≤ L.

Since our choice of ε was arbitrary, we conclude that an −→ L. �

Theorem 5.4. Let {xn} be a Cauchy sequence in R, then {xn} converges.

Proof. We want to choose a monotone subsequence of {xn}. One approach is to let an =
max{xj}n

j=1 (i.e., let an be the largest element in the firsts n elements). Then an −→ L. Note,

however, that this approach can fail! Consider xk = 1
k
, then xk −→ 0 and an = 1, for all n.

So in this case the limit of an and that of xn are totally different. So we must do better.

Consider bk = sup{xn : n ≥ k}. The sequence {bk} is bounded. Also, bk+1 ≤ bk (since bk+1

is the supremum of a smaller set); bk is an upper bound for {xn : n ≥ k+ 1}, but bk+1 is the
least upper bound, so bk+1 ≤ bk. Since {−bk} converges, this implies that {bk} converges to
some limit, call it L1. Now we want to check that {xj} −→ L1. Given ε > 0,

∃j : k > j =⇒ |bk − L1| < ε

∃N : n,m > N =⇒ |xm − xn| < ε



Lecture 4: September 8 9

Take N1 = max{N, j}. Then for all k > N1 we have |bk − L1| < ε, and there is an n ≥ k
such that bk − ε ≤ xn ≤ bk. Finally, for all m > N1,

|xm − L1| ≤ |xm − xn|+ |xn − bk|+ |bk − L1| < 3ε.

�

Definition 5.5. An infinite set A is called denumerable if it can be written as a sequence,
A = {a1, a2, a3, . . .} (i.e., A = {f(1), f(2), f(3), . . . }). More formally, A is denumerable if
there is a one-to-one, onto map f : N −→ A.

Definition 5.6. A is countable if it is either finite or denumerable.

For example, Integers (Z) Z is denumerable.

Proof. Simply write Z as {0,−1, 1,−2, 2, . . .}. �

Rational Numbers (Q)
Q is denumerable.

Proof. To show this let’s first check that N×N = {(a, b) ∈ N} is denumerable (i.e., |N×N| =
ℵ0). Observe that if {Aj}∞j=1 are finite, then their union is countable. To see this, just write
out the elements of each set in order. Hence, | ∪∞j=1 Aj| = ℵ0. Then for |N×N| consider the
sets,

Aj = {(a, b) ∈ N× N : a+ b = j}.
Finally, define Q = ∪∞j=1Qj, where

Qj =
{a
b

: where
a

b
is reduced, b 6= 0, b ∈ Z, a ∈ N, and : a+ |b| = j

}
.

�

Real Numbers (R) R is not countable. The proof by contradiction is due to George Cantor
(circa 1870).

Proof. Suppose R could be enumerated in a sequence {x1, x2, x3, . . .}. Further suppose R is
countable. Then (0, 1) is a countable subset of R, and can be enumerated as {x1, x2, x3, . . .},
where

xj =
∞∑

k=1

xj,k

10k
= 0.xj,1xj,2xj,3 . . . with 0 ≤ xj,k ≤ 9,

and our expansion does not terminate in an infinite sequence of 9s. Define

y =
∞∑

k=1

yk

10k

where yk = 2, if xk,k = 1, and yk = 1, if xk,k 6= 1. Then

y = 0.2112111211221 . . . ∈ (0, 1).

For (0, 1) to be a countable subset of R, y must appear (somewhere) in the sequence {xj}
(i.e., there must be a j such that y = xj). But yj 6= xj,j, so y 6= xj. Thus y appears nowhere
in our sequence. This contradicts our assumption that (0, 1) is a countable subset of R. �
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Homework due 9/15
From Chapter 1 of the book: 33, 35, and 36(a). For 36(a), you need to know that for a
polynomial of degree n, there are at most n roots in R. Hint to see this: any polynomial can
be written as

P (x) = Q(x)(x− a) + b.

And the following problem:
Given x ∈ (0, 1), expand

x =
∞∑

k=1

xk

10k

where the expansion does not terminate in 9s. Show that x ∈ Q if and only if this expansion
is eventually periodic (example, 0.123432432432 . . .).
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Remark 5.7. A polynomial f of degree n (over R) has at most n real roots.

Two proofs:

(1) Show by induction that any f of degree n can be written as f(x) = (x − a)g(x) + 1
for any fixed a.

(2)

f(x) = f(x)− f(a)

=
n∑

j=0

cj(x
j − aj)

=
n∑

j=1

cj(x− a)(xj−1 + axj−2 + a2xj−3 + . . .+ aj−2x+ aj−1),

where f(x) = cnx
n + cn−1x

n−1 + . . .+ c1x+ c0. Note that if j = 1, x−a = (x−a)∗1,;
if j = 2, x2 − a2 = (x− a)(x+ a).

Sketch of the first proof. If f(a) = 0, then x−a divides f(x); that is, f(x) = g(x)(x−a) where
g ∈ R[x], R[x] is the set of polynomials over R, and deg(g) = n−1. We know this by induction
on n. We may assume f is monic, or of the form f(x) = xn + an−1x

n−1 + . . .+ a0x
0. �

Definition 5.8. Given y ∈ R, we say that

(1) y is an algebraic number if there exists f ∈ Z[x] such that f(y) = 0. [Equivalently,

there exists f̃ ∈ Q[x]withf̃(y) = 0]
(2) y is a transcendental number if it is not algebraic.
(3) y is an algebraic integer if f(y) = 0 for some monic polynomial f ∈ Z[x].

Remark 5.9. Note that it was assigned as an exercise that the set A of algebraic numbers
is countable. Thus, since we know R is uncountable, then we see that A is a strict subset of
R. The existence of transcendental numbers follows.

Remark 5.10. The set A is contained in the set Z ∪ {R\Q}.

Example 5.11. x = 0.1100010 . . . 01 . . ., with ones in the 1st, 2nd, 6th, 24th decimal place,
and etc. i.e.,

x =
∞∑

k=1

10−k!

is transcendental.
11
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Definition 5.12. We say that two sets X, Y have the same cardinality if there is a 1−1,
onto mapping1 f : X → Y . [That is, for every y ∈ Y , there is a unique x ∈ X with f(x) = y,
we write x = f−1(y) and f−1 : Y → X which is 1-1 and onto.]

Theorem 5.13 (Schroeder-Bernstein Theorem). Given sets X and Y , suppose there exist

1− 1 mappings f : X
1−1−→ Y and g : Y

1−1−→ X. Then there exists a bijection h : X → Y .

Proof. Define

A0 = {x ∈ X|x 6= g(y) for all y ∈ Y }
= {x ∈ X|x /∈ g(Y )}, and

B0 = {y ∈ Y |y /∈ f(X)}

Then set A1 = {x ∈ X|x = g(y) for some y ∈ B0}, and B1 = {y ∈ Y |y = f(x) with x ∈ A0}.

Inductively, define Ak = {x ∈ X|x = g(y) for some y ∈ Bk−1}, and Bk = {y ∈ Y |y =

f(x) for some x ∈ Ak−1}. We then define A∞ = X\
∞⋃

k=0

Ak = X\{A0 ∪ A1 ∪ A2 ∪ . . .}.

That is, A∞ = {x| There is a sequence of preimages x, y1, x1, y2, x2, y3, x3, . . .}. Similarly
set B∞ = Y \

⋃∞
j=0Bj.

Let h(x) = f(x) for x ∈ A∞, where h : A∞
1−1−−→
onto

B∞.

h(x) = f(x) for x ∈
∞⋃
i=0

A2j+1. �

Exercise 5.14. Check that h : X
1−1−−→
onto

Y

Example 5.15. The ternary Cantor set is C =

{
∞∑

n=1

an3−n|an ∈ {0, 2} for all n

}
. We

want to show that C and [0, 1] have the same cardinality.

To do so, we must find 1 − 1 functions f : C 1−1−−→ [0, 1] and g : [0, 1]
1−1−−→ C. We see

immediately that one such f is fid, or f(x) = x. For g, we can take the binary expansion of
an x ∈ [0, 1] : x = 0.x1x2x3 . . ., which is unique if we do not allow a terminating sequence

of ones. Then x =
∞∑

k=1

xk

2k
with xk ∈ [0, 1], but infinitely many xk are zero. Then set

g(x) =
∞∑

k=1

2xk

3k
. Since f : C → [0, 1] and g : [0, 1] → C are injective functions, we know

that there exists a bijection by the Schroeder-Bernstein Theorem, and so the cardinalities are
equal.

1A 1− 1 onto function can also be called a bijective function, or is a bijection between X and Y
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Definition 5.16. Two sets X, Y have the same cardinality if there exists a bijective function
between the two. |X| < |Y | if there exists an 1−1 mapping f : X → Y . Moreover, |X| > |Y |
if there exists an onto mapping g : X → Y .
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5.1. Hilbert’s Description of Cantor’s Idea. Suppose you are a inn-keeper at a hotel
with an infinite, denumerable, set of rooms, numbered {1, 2, 3, ...}. The hotel is full, and
then a new guest arrives. It’s possible to fit the extra guest in by asking the guest who was
in room k to move to room k+1 for all k ≥ 1. Similarly, if an infinite sequence of new guests
arrives, we can fit them all in by asking the occupant of room k to move to room 2k for all
k ≥ 1, and using the odd-numbered rooms that have all been vacated for the new arrivals.

5.2. Metric Spaces. A metric space (X, d) consists of a nonempty setX, and d, the distance
function (also known as the metric) is a function d : X×X → [0,∞) satisfying the following
three properties:

(1) d(x, y) = 0 ⇔ x = y (d separates points)
(2) d(x, y) = d(y, x), ∀x, y ∈ X (Symmetry)
(3) d(x, y) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X (Triangle Inequality)

. Metric spaces are useful in many parts of pure Mathematics, as well as in applications to
Computer Science and Biology. A very simple example of a metric space is to take any set
X and define d(x, y) = 1 for ∀x 6= y in X. Our most important example is: X = Rn with

the Euclidean distance d(x, y) = ‖x− y‖2 = (
∑

(xi − yi)
2)

1
2 . These satisfy properties 1,2 of

a metric. However, the triangle inequality is not obvious, so we shall prove it subsequently.
The case n = 1 is already known.

Triangle Inequality: This uses the Cauchy-Schwarz inequality in Rn: |〈x, y〉| ≤ ‖x‖ · ‖y‖
where 〈x, y〉 =

∑n
i=1 xiyi and and ‖x‖2 =

√
〈x, x〉

Cauchy-Schwartz: We can assume that x, y 6= 0
First we consider the special case when ‖x‖ = ‖y‖ = 1. Then,

0 ≤ 〈x+ y, x+ y〉
= 〈x, x〉+ 2〈x, y〉+ 〈y, y〉
= 2(1 + 〈x, y〉).

Why, because (xi + yi)(xi + yi) = x2
i + 2xiyi + y2

i . But ‖ − y‖ = 1, Therefore 〈x, y〉 ≥ −1
⇒ −1 ≤ 〈x,−y〉 ≤ (−1)(−1) = 1
⇒ | < x, y > | ≤ 1

For the general case x, y 6= 0, set x̃ = x
‖x‖ , and ỹ = y

‖y‖ so that ‖x̃‖ = ‖ỹ‖ = 1 By the

special case we have, 1 ≥ |〈x̃, ỹ〉| = |〈 x
‖x‖ ,

y
‖y‖〉| =

|〈x,y〉|
‖x‖·‖y‖

14
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The important remark here is that this proof works not just for Rn but for any scalar
product, a real-valued symmetric function of two variables that is linear in the first variable
(that is, < cx, y >= c < x, y > and 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉, for all x, y, z in X) and
satisfies 〈x, x〉 > 0 for all x 6= 0 in X. As another example, consider (C[0, 1]), the space of
continuous function f : [0, 1] → R
The inner product is 〈f, g〉 =

∫ 1

0
f(x)g(x)δx

Next Step: Deducing the triangle inequality from Cauchy-Schwarz:
Given x, y ∈ Rn, we will prove that ‖x + y‖ ≤ ‖x‖ + ‖y‖, and this implies ‖x − z‖ ≤
‖x− y‖+ ‖y − z‖, the triangle inequality to be proved.
‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉 ≤ 〈x, x〉+ 2‖x‖ · ‖y‖+ 〈y, y〉, since by

Cauchy-Schwarz, 〈x, y〉 ≤ ‖x‖ · ‖y‖.
There are other metrics on Rn to be seen later. For example, ∀p ≥ 1 ‖x − y‖p and

‖x‖p = (
∑n

i=1 |xi|p)
1
p are a metric.

Next to p = 2, the most useful metric arise from p = 1, and p = ∞, which we’ll define
next.

Definition 5.17. For x ∈ Rn, define ‖x‖∞ = max|xi|1≤i≤n.

Ball in a metric space: Define for x ∈ X and r > 0, the ball B(x, r) in (X, d) by
B(x, r) = {y ∈ X : d(x, y) ≤ r}.

Bounded Set: A set in a metric space is said to be bounded if it is contained in a ball.

Definition 5.18 (Open set). A Set V ⊂ X is said to be open in X if ∀x ∈ V , ∃r > 0 such
that B(x, r) ⊂ V .

Example 5.19 (Examples of open sets). Examples of Open Sets: open Intervals (a, b) ⊂ R,
and more generally open balls B(x, r) = {y ∈ X : d(x, y) > r} This follows from the triangle
inequality.

Proposition 5.20. The intersection of two (or finitely many) open sets is open.

Proposition 5.21. The union of any collection of open sets is open.

Note that the intersection of infinitely many open sets need not be open, for example⋂∞
n=1

(
0, 1 + 1

n

)
= (0, 1].

Proof of Proposition 5.20. Suppose V,W are open, let x ∈ V ∩W ; then ∃r, and an ε > 0
with B(x, r) ⊂ V and B(x, ε) ⊂ W . Take γ = min(r, ε), then B(x, γ) ⊂ V ∪W . �

Proof of Proposition 5.21. Suppose Vα for α ∈ J are open sets inX, then, V which is equal to⋃
α∈J Vα is open. If x ∈ V , then ∃α ∈ J with x ∈ Vα. Hence, ∃v > 0 with B(x, v) ⊂ Vα ⊂ V .

This completes the proof. �

Given a set E in a metric space (X, d), the closure Ẽ of E is defined thus:
Ẽ = {x ∈ X : ∀r > 0B(x, r) ∩ E 6= 0}. In particular, Ẽ ⊃ E
(Note: Ẽ is used here as closure not as complement.)

Also, Note the following in R: • (ã, b) = [a, b].
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• (ã, b] = [a, b].

• [ã, b] = [a, b].

Hence, the set E is closed if Ẽ = E.

5.3. Homework:

(1) For x ∈ Rn, prove that limp→∞ ‖x‖p = ‖x‖∞.
(2) Show that E in a metric space is closed iff X \ E is open.
(3) For x ∈ X and E ⊂ X, we define d(x,E) = inf{d(x, y) : y ∈ E}. Show that

E = {x ∈ X : d(x, y) = 0}.
(4) For p > 1 and a, b > 0, show that ap

p
+ bq

q
≥ ab, where 1

p
+ 1

q
= 1.

(5) Determine if the following sets are open or closed or neither:
• Z ⊂ R with the standard metric.
• {(x, y) ⊂ R2 : xy ≥ 1}

(6) Prove that V ⊂ Rn is open iff it is open for the metric ‖x− y‖1.
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We will show that the following formula for the closure of E is equivalent to the definition
previously stated in the lecture notes.

Ē = closure of E = {all limit points of E}
and Ē = { lim

n→∞
xn|{xn}∞n=1 ⊂ E}

Note that the sequences are not required to have distinct elements; thus, x = lim
n→∞

(x, x, . . .),

i.e., the sequence for which xn = x for all n. Clearly, E ⊂ Ē under this definition.

Proof. (⊂) Let x ∈ Ē. By definition, B(x, 1
n
) contains some point xn ∈ E. Clearly, xn → x

as n→∞, so every point x in the closure E is a limit point of a sequence in E.Note that convergence for a general metric space, xn
n→∞→ x, means that ∀ε > 0,∃n0 :

∀n > n0, d(xn, x) < ε. In our proof, we take n0 = d1
ε
e, the smallest integer larger

than 1
ε
.


(⊃) Suppose x = lim

n→∞
xn with all xn ∈ E. Then ∀ε > 0, there exists n0 > n, such that

d(x, xn) < ε. Thus there is a ball B(x, ε) that intersects E; therefore, x is in the closure of
E. �

Suppose (X, d) and (Y, ρ) are metric spaces. A function f : X → Y is continuous at
the point x ∈ X if y = f(x) satisfies

(1) ∀ε > 0, ∃δ > 0 : f(B(x, δ)) ⊂ B(y, ε).
(2) For any sequence {xn}∞1 in X converging to x, we have f(xn) → f(x).

Proof. We prove that the two conditions above are equivalent.

((1) ⇒ (2)) Given (1) is true, xn → x, and y = f(x), show that f(xn) → y.
For every ε > 0, there exists a δ > 0 such that the function f maps B(x, δ) to a
subset of B(y, ε), where y = f(x). We also know that for a convergent sequence
{xn}∞n=1 there is some n0 such that for all n > n0 we have xn ∈ B(x, δ). This implies
that f(xn), which is in f(B(x, δ)) is also in B(y, ε). This is true for all ε > 0, so
f(xn) → y.

((2) ⇒ (1)) Given ε > 0 we want to find δ > 0 to satisfy (1).
Let’s try δ = 1, otherwise δ = 1

2
, . . . , δ = 1

n
. If for one of them f(B(x, 1

n
)) ⊂ B(y, ε),

we are done. We want to show these attempts could not all fail. Let’s assume that
they did. Then ∃xn ∈ B(x, 1

n
), with f(xn) /∈ B(y, ε). But by (2) we have that

xn → x. f(xn) /∈ B(y, ε) means f(xn) does not converge to y. Thus, our assumption
is wrong, so the attempt must succeed for some δ.

17
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�

A function f : X → Y is continuous if it is continuous at all x ∈ X.

Example 5.22 (Example of a piecewise continuous function that is not continuous). f(x) ={
1 x > 0
0 x ≤ 0

}
. Then f : R → R continuous at all x not equal to 0.

Theorem 5.23. f : X → Y is continuous if and only if for any open V ⊂ Y we have
f−1(V ) open in X. (Where f−1(V ) = {x ∈ X : f(x) ∈ V }, which is different from textbook,
and f not necessarily invertible or one to one.)

Proof. (⇒) To show f−1(V ) open, for each x ∈ f−1(V ), we must find a ball centered at x
and contained in f−1(V ).

Let V ⊂ Y be open. Let x ∈ f−1(V ). x ∈ f−1(V ), so y = f(x) ∈ V , whence ∃ε > 0 with
B(y, ε) ⊂ V . Hence by continuity of f ∃δ > 0 such that f(B(x, δ)) ⊂ B(y, ε) ⇒ B(x, δ) ⊂
f−1(V ).

(⇐) Let f−1(V ) be open in X for every open set V ⊂ Y . Since V is open in Y , then there
exists ε > 0 such that for any f(x) ∈ Y , B(f(x), ε) ⊂ Y . Then, note that f−1(B(f(x), ε))
is open in X and it contains x. Thus, there exists a ball B(x, δ) which is a subset of
f−1(B(f(x), ε)). Then, f(B(x, δ)) ⊂ B(f(x), ε). Therefore, f is continuous in X. �

Definition 5.24. {Vα}α∈J covers A means
⋃

α∈J

Vα ⊃ A

Definition 5.25. Let (X, d) be a metric space. The set A ⊂ X is called compact if for any
collection of open sets {Vα}α∈J that covers A there is a finite subcover {Vαi

}n
i=1.

Definition 5.26. A ⊂ X is sequentially compact if for any sequence {xn} in A there is

a convergent subsequence xnk

k→∞→ x ∈ A (to a limit in A).

Theorem 5.27. KEY

(1) A compact ⇐⇒ A sequentially compact
(2) For A ⊂ Rm, A compact ⇐⇒ A closed and bounded

As a warm up we prove the Heine-Borel theorem.

Theorem 5.28. A closed interval I0 = [a, b] ⊂ R (where a ≤ b) is compact.

Proof. Suppose we are given a cover {Vα}α∈J of I0 by open sets.

I0 = [a, b] =

[
a,
a+ b

2

]
︸ ︷︷ ︸

I1

∪
[
a+ b

2
, b

]
︸ ︷︷ ︸

Ĩ1

If both of these have finite subcovers, we are done. Otherwise, one of them, say I1, does
not have a finite subcover. Write I1 = I2 ∪ Ĩ2. By assumption, one of them does not have
a finite subcover, say I2. Continuing, we get a sequence In = [an, bn] of intervals without
a finite subcover bn − an = b−a

2n . (Intervals converge to a point.) Let z = sup an and note
z ∈ In, ∀n. I0 is given a cover {Vα}α∈J , so ∃α with z ∈ Vα. Vα open, so ∃ε such that
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B(z, ε) ⊂ Vα. But there exists some n such that bn − an < ε (namely when b−a
2n < ε). At

which point, In ⊂ B(z, ε) ⊂ Vα. Thus, this contradicts our original assumption, therefore
interval is compact.

�
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Theorem 5.29. If K ⊂ X is compact, then it is closed and bounded. In fact, K is totally
bounded.

Definition 5.30. Say that K is totally bounded if ∀ε > 0 it is the case that K can be

covered by finitely many ε-balls, i.e. ∀ε > 0 there exists nε for which there exist x
(ε)
1 , . . . , x

(ε)
nε

in K such that K ⊂
nε⋃
i=1

B(x
(ε)
i , ε).

A totally bounded set is certainly bounded. Take ε = 1 and

R = max
i∈{1,2,...,n1}

d(x
(1)
1 , x

(1)
i ) + 1.

Observe that K ⊂ B(x
(1)
1 , R) by the triangle inequality.

Bounded vs. Totally Bounded Recall the discrete metric on N: d(x, y) = 1 if x 6= y
and d(x, x) = 0. N under the discrete metric is bounded but not totally bounded. B(x, 1.1),
for example, contains all of N, but for any ε < 1, we would need infinitely many ε-balls to
cover N, namely one for each n ∈ N.

A more important example of this that we’ll see later: Let X = C[0, 1] = {f : [0, 1] →
R, f continuous}. The metric for X is d(f, g) = max |f(x)− g(x)|, x ∈ [0, 1]. Then let

K = B(0, 1) = {f : max |f | ≤ 1}. Then K is bounded but not totally bounded for the
following reason (which holds in any metric space).

If a set K in a metric space has infinitely many points z1, z2, . . . with d(zi, zj) ≥ r > 0,
then K is not totally bounded: every ball of radius r

2
can cover at most one zi.

Proof of 5.29. We are given K compact.

(1) K is totally bounded: Let ε > 0. Certainly K is covered by
⋃
x∈K

B(x, ε). Then

just take a finite subcover, which we are guaranteed to have by compactness. Thus

K ⊂
n⋃

i=1

B(xi, ε).

(2) K is closed: Suppose x ∈ X with d(x,K) = 0. (Recall that this means that d(x,K) =
inf{d(x, y) : y ∈ K}.) That is, every ε > 0 is such that B(x, ε) ∩ K 6= ∅. We need
to show that x ∈ K. Suppose that it is not. Then for every y ∈ K, we have

ry = d(x, y) > 0 and K ⊂
⋃
y∈K

B(y,
ry

2
). The compactness of K therefore implies that

there exists n such that K ⊂
n⋃

i=1

B(yi,
ryi

2
). Pick ε =

1

4
min

1≤i≤n
ryi

. Then there exists

20
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z ∈ B(x, ε) ∩K, which implies that there exists z ∈ B(yi,
ryi

2
). We now have

d(x, yi) ≤ d(x, z) + d(z, yi) ≤
ryi

4
+
ryi

2
< ryi

This gives the desired contradiction, and thus K is closed.

�

Recall that K is sequentially compact if whenever {xn} ⊂ K, there is a convergent
subsequence xnj

→ L ∈ K.
This implies that K is closed: Assume K 3 xn → x ∈ X. We need to show that x ∈ K.

This is easy: we know ∃{nj} : xnj
→ L ∈ K. Thus d(L, x) ≤ d(L, xnj

) + d(xnj
, x). But both

d(L, xnj
) and d(xnj

, x) go to 0 as j → ∞. Thus the inequality tells us d(L, x) ≤ 0 which
implies that d(L, x) = 0. Since d is a metric, this means we must have x = L, and thus
x ∈ K.

Theorem 5.31 (Key Theorem:). Suppose f : X → Y is continuous and onto, and X is
compact. Then Y is compact.

Proof. We are given an open cover of Y : Y ⊂
⋃
α∈J

Vα. We know that f−1(Vα) is open for every

α ∈ J (by continuity). Also, X ⊂
⋃

α∈J Wα, where Wα = f−1(Vα). Since X is compact,

∃α1, . . . , αN with X ⊂
N⋃

i=1

Wαi
. Since f is onto, ∀y ∈ Y there exists x ∈ X such that

f(x) = y. Now there exists i with x ∈ Wαi
, which implies that f(x) = y ∈ Vαi

. Therefore

Y ⊂
⋃N

i=1 Vαi
. �

Corollary 5.32. Suppose f : X → Y is continuous and K ⊂ X is compact. Then f(K) is
compact, and in particular, closed and bounded.

Corollary 5.33. Suppose f : X → R is continuous and K ⊂ X is compact. Then f is
bounded on K and f attains its maximum and minimum on K.

What is meant by f attaining its maximum and minimum on K? Let M = supK f =
sup{f(x) : x ∈ K} < ∞. If there exists xn ∈ K such that M − 1

n
< f(xn) ≤ M , then

M ∈ {f(x) : x ∈ X} = f(K). This implies that M ∈ f(K), which is what is meant by f
attaining its max on K, i.e. ∃x∗ ∈ K : f(x∗) = M = maxx∈K f(x).

5.4. Homework.

(1) Show fn(x) = sin(nπx) for n = 1, 2, 3, . . . satisfy d(fn, fm) ≥ r > 0 for all n 6= m.

Hint: Show that
∫ 1

0
|fn(x)− fm(x)|2 = a > 0 for n 6= m.

(2) Prove directly from the definitions that if X is sequentially compact and f : X → Y is
continuous and onto, then Y is sequentially compact. (Recall the sequence definition
of continuity for this problem.)

(3) Problem 40 from the book, page 119.
(4) Give an example of a continuous f : R → R and open subset V ⊂ R with f(V ) not

open, or prove that no such V exists.
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Holder’s inequality in Rn: For x, y in Rn write ‖x‖p = (
∑n

i=1 |xi|p)1/p. If 1
p

+ 1
q

= 1

where 1 ≤ p <∞ and 1 ≤ q <∞, then

(3)
n∑

i=1

|xiyi| ≤ ‖x‖p‖y‖q

Check for p = 1 and q = ∞.

n∑
i=1

|xiyi| ≤
n∑

i=1

|xi|maxj|yj|

≤ ‖x‖1‖y‖∞
For the case of p = 2; it boils down to Cauchy-Schwarz.

Proof. First assume ‖x‖p = ‖y‖q = 1. Then by an earlier exercise

|xiyi| ≤
|xi|p

p
+
|yi|q

q
.

Summing over i, we get ∑
|xiyi| ≤

||x||pp
p

+
||y||qq
q

≤ 1

p
+

1

q
= 1.

For general x and y (both assumed nonzero, otherwise trivial), let x̃ = x
||x||p and ỹ = y

||y||p .

Now ||x̃||p = 1 and ||ỹ||q = 1. By the special case proved, we get
∑
|x̃iỹi| ≤ 1. Hence∑ |xiyi|

‖x‖p ‖y‖q
≤ 1. Therefore,

∑
|xiyi| ≤ ‖x‖p‖y‖q. �

Definition 5.34. V is a vector space if it has a commutative and associative addition oper-
ation and for v, w in V and c in R. c · v is defined and c(v + w) = cv + cw.

Examples of vector spaces are Rn, the set C[0, 1] of continuous functions from [0, 1] to R,
and B[0, 1] the set of bounded functions from [0, 1] to R.

A norm ‖ · ‖ is a function from a vector space to [0, ∞] such that

(1) ‖v‖ = 0 if and only if v = 0.
(2) ‖cv‖ = |c| · ‖v‖ for every c in R and v in V .
(3) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for every v, w in V .

22
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Given a norm ‖ · ‖ on V , we get a metric on V : d(v, w) = ‖v − w‖.
In Rn, ‖x‖2 is the Euclidean norm. ‖x‖∞ = max1≤i≤n |xi| is another norm.
For 1 ≤ p <∞, the triangle inequality for || ||p is called Minkowski’s inequality.

Proposition 5.35 (Minkowski’s inequality). ∀x, y ∈ Rn, ||x+ y||p ≤ ||x||p + ||y||p
Proof.

‖x+ y‖p
p =

n∑
i=1

|xi + yi|p

=
n∑

i=1

|xi + yi| · |xi + yi|p−1

≤
∑

|xi| · |xi + yi|p−1 +
∑

|yi| · |xi + yi|p−1

≤ ‖x‖p · ‖{|xi + yi|p−1}n
i=1‖q + ‖y‖p · ‖{|xi + yi|p−1}n

i=1‖q.

Now

‖{|xi + yi|p−1}n
i=1‖q = (

∑
|xi + yi|(p−1)q)1/q

= (
∑

|xi + yi|p)1/q

= ‖x+ y‖p/q
p .

We assume x+ y 6= 0. Divide both sides by ‖x+ y‖p/q
p , get ‖x+ y‖p ≤ ‖x‖p + ‖y‖p. �

Now we return to topology.

Definition 5.36. A metric space X is complete if every Cauchy sequence in X converges
to a limit in X.

We have shown that R is complete. On the other hand, R \ Q and Q are not. Here is a
general fact.

Proposition 5.37. If (X, d) is complete and Y is a subset of X then Y is complete if and
only if Y is closed in X.

Proof. Given Y is closed. Take any Cauchy sequence {yn} of Y . {yn} converges to x in X.
x must be in Y then.

Given Y is complete. Take any Cauchy sequence {yn} of Y that converges to x in X, we
can construct a subsequence that is Cauchy. Thus, x in Y . �

Rk with the usual metric is complete. Take a Cauchy sequence {x(n)}n of R. If x(n) =

(x
(n)
1 , x

(n)
2 , x

(n)
3 , ...x

(n)
k ), then {x(n)

i }n is Cauchy in R becase |x(n)
i − x

(m)
i | ≤ ‖x(n) − x(m)‖2.

By completeness of R, we get limn→∞ x
(n)
i → x∗i . Let x∗ = (x∗1, x

∗
2, x

∗
3, . . . x

∗
k). Claim:

limn→∞ x(n) → x∗.

lim
n→∞

‖x(n) − x(m)‖2 =

√√√√ k∑
i=1

(x
(n)
i − x∗i )

2 = 0
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Example 5.38. The metric space C[0, 1] with distance function ‖f‖∞ = max0≤x≤1 |f(x)| is
complete.

Fact 5.39. A limit of uniformly converging sequence of continuous functions is continuous.
(Verify)

We say fn uniformly converges to f if ‖fn − f‖∞ = 0.
Given an infinite subset A ofX, the metric space we say that the point x is an accumulation

point of A if for all r > 0 the intersection of B(x, r) and A is infinite.
Examples: Z ⊂ R has no accumulation points. For Q ⊂ R every element is an accumula-

tion point. For the sequence {1/n}, 0 is the only accumulation point.

Theorem 5.40. X is sequentially compact if and only if every infinite subset A of X has
an accumulation point in X.

Proof. Assume X is sequentially compact. A contains some sequence {xn} with all xn

distinct. There exists a subsequence {xnk
} converging to x in X. x is an accumulation

point.
Assume every infinite subset has an accumulation point. Take any sequence {xn} in X. If

some element z is repeated infinitely many times, then we can construct a subsequence that
only contains z, which clearly converges to z. Otherwise, we can find a subsequence {xnk

}
of distinct elements. Let A be the set containing all of the elements {xnk

}. A is infinite and
thus has an accumulation point L in X. This means that for all j ∈ N, there exists nkj

such
that xnkj

is in B(L, 1/j). {xnkj
} converges to L. �

Theorem 5.41. If (X, d) is a metric space then the following are equivalent.

(1) X is compact.
(2) X is sequentially compact.
(3) X is complete and totally bounded.

We will only show 1. implies 2. in this lecture.

Proof. Given X compact and an infinite subset S of X, we need to show there is an ac-
cumulation point for S. If there is no accumulation point then for every x in X, there
exists rx > 0 where B(x, rx)

⋂
S is finite. Trivially, for all x in X, x is in B(x, rx). It

follows that {B(x, rx)} form an infinite open cover of X; Then there must a finite subcover⋃N
i=1B(xi, rxi

). Then
⋃N

i=1(B(xi, rxi
)
⋂
S) must equal S. S is then an union of a finite

number of finite sets so S must also be finite, which is a contradiction. �
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Proposition 5.42. For a metric space (X, d) the following are equivalent.

(1) X is compact.
(2) X is sequentially compact.
(3) X is totally bounded and complete.

We have already established that (1)⇔ (2).

Proposition 5.43. (2)⇒ (3)

Proof. Let X be a sequentially compact metric space. Set ε > 0. Choose {xj}j≥1 as follows:
x1 ∈ X is arbitrary, and x2 is such that d(x2, x1) ≥ ε, if possible. Otherwise, set N = 1.
Continue by induction. If x1, x2, . . . , xk are already chosen, find xk+1 such that
d(xk+1, xi) ≥ ε ∀1 ≤ i ≤ k if possible. Otherwise, set N = k and stop. If we can pick xk+1

for each k, we get an infinite sequence {xk}∞k=1 and a contradiction: The set {xk}∞k=1 has
no accumulation point because ∀z ∈ X, B(z, ε/2) can only contain at most one xk. So the
procedure must have stopped, and so N is finite, and ∪N

i=1B(xi, ε) = X.
Now, to prove that X is complete: Given any Cauchy sequence {xj}∞j=1, there must exist

some subsequence {xjk
}∞k=1 that converges to a limit x∗ ∈ X. So, ∀ε > 0, there exists

some k0 such that ∀k > ko, we have d(xjk
, x∗) < ε/2. Also, ∃N such that ∀m,n ≥ N ,

d(xm, xn) < ε/2. Let J = max(jko , N). Fix some J̃ = jk1 > J . Then for any j ≥ J , we
obtain d(xj, x∗) ≤ d(xj, xJ̃) + d(xJ̃ , x∗), which is less than ε. �

Proposition 5.44. 3) ⇒ 1)

Proof. Let X be totally bounded and complete, and let {Vα}α∈S be an open cover of X. We
will proceed with a proof by contradiction:

Suppose there is no finite subcover. X is totally bounded, so X = ∪N1
j=1B(x

(1)
j , 2−1),

or X = ∪Nk
j=1B(x

(k)
j , 2−k) for all k. ∃l1 ≤ N1 where for B(x

(1)
l1
, 2−1) = K1 there is no

finite subcover from {Vα}α∈S (If every ball had a finite subcover, then there would be a

finite subcover of X). K1 is also covered by ∪N2
j=1B(x

(2)
j , 2−2). So, there is some l2 such

that K2 = K1 ∩ B(x
(2)
l2
, 2−2) has no finite subcover. Continue by induction: Given Km

contained in a ball of radius 2−m such that it has no finite subcover from {Vα}α∈S, define

Km+1 as follows: Km ⊂ ∪Nm+1

j=1 B(x
(m+1)
j , 2−(m+1)). So, there is some lm+1 where Km+1 =

Km ∩B(x
(m+1)
lm+1

, 2−(m+1)) has no finite subcover.

Now, consider the sequence {x(m)
lm
}∞m=1. x

(m)
lm

∈ B(x
(n)
ln
, 21−n) when n < m. {x(m)

lm
} is

cauchy, as ∀ε > 0, take M such that 2−M < ε/2, then ∀ n,m ≥M , d(x
(m)
lm
, x

(n)
ln

) < ε. As X is
complete, xlm −→ x ∈ X as m −→ ∞. As x ∈ X, there is some α such that x ∈ Vα. As Vα

25
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is open, ∃ε > 0 with B(x, ε) ⊂ Vα. Choose m such that 2−m < ε/2. So Km ⊂ B(x
(m)
lm
, 2−m),

and so Km ⊂ B(x, ε) ⊂ Vα, which is clearly a contradiction to our initial assumption. �

Proposition 5.45. If K ⊂ Rn, then K is closed and bounded ⇒ K is compact.

6. Homework

(1) Prove Proposition 5.45) using all 3 notions of compactness in homework groups. Only
one needs to be turned in.

(2) Suppose (X, d) is totally bounded, and Y ⊂ X, show (Y, d) is totally bounded.
(3) Given (X, d), showX is complete iff for every nested sequence of closed sets {Km}∞m=1,

Km 6= ∅, and such that diameter(Km)→ 0, we have that ∩∞m=1Km 6= ∅.
(4) Show X is compact iff every nested sequence of closed, non-empty sets in X has a

non-empty intersection.
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Definition: The topology of a metric space (X, d) is the collection of open sets in X.
More generally, a topology in the set X is any collection W of subsets of X, called ”the open
sets”, which satisfy the following:

(1) ∅ ∈ W,X ∈ W .
(2) Vα ∈ W , for α ∈ J ⇒

⋃
α∈J Vα ∈ W .

(3) V1, V2 ∈ W ⇒ V1 ∩ V2 ∈ W .

Often one adds more requirements, for instance the topological space (X,W ) is called a
Hausdorff space if for each x, y ∈ X there are open and disjoint sets U, V such that
x ∈ U and y ∈ V (Any two points can be separated by two disjoint sets). Clearly, the
notions of closed set, compact set and accumulation point depend on the topology. For
example, consider the function f : X → Y for which the inverse f−1(V ) is open for all open
V ⊂ Y . Also, xn → x in a topological space means that for each open set V with x ∈ V (V
neighbourhood of x) there exists N such that for every n ≥ N Xn ∈ V .

So, what properties are not affected when we change the metric?

Example 6.1. Suppose that X = Rk with the metric dp(x, y) = ‖x− y‖p where 1 ≤ p ≤ ∞.

These metrics yield the same topology on Rk.

Consider a set X with two metrics, d1 and d2 which yield topologies W1 and W2. We
can write B1(x, r) for balls in d1 and B2(x, r) for balls in d2. Then W2 ⊂ W1 is equivalent
to {∀x ∈ X and ∀r > 0 ∃ε > 0 such that B1(x, ε) ⊂ B2(x, r)} which is immediate from
definitions (it is left as the exercise to check it!). Both statements are equivalent to saying
that the identity mapping (X, d1) → (X, d2) is continuous.

We can now return to the case X = Rk. We can choose reference metric (it is enough to

check that ‖ ‖p and ‖ ‖∞ yield the same metric: ‖x‖p = (
∑k

i=1‖xi‖
p
)

1
p 6 k

1
p‖x‖∞). In the

case of the balls that means that Bp(z, r) ⊂ B∞(z, r) ⊂ Bp(z, k
1
p r). Larger metric means,

generally, that the ball is smaller; ‖ ‖p and ‖ ‖∞ have a stronger relation than just to yield
the same topology; they have a direct relation.

Question: If d1 and d2 are metrics on X that yield the same topology and {xn} ⊂ X
is a Cauchy sequence in d1 is it the sequence Cauchy in d2? The answer is no and it is
explained in the following example.

Example: Let X = (0, 1) and define d1(x, y) = |x − y| and d2(x, y) = | 1
x
− 1

y
|. With

the metric d1 in (0, 1) xn → x is equivalent to 1
xn
→ 1

x
in (1,∞) with the usual metric while

xn → x in (0, 1) with d2.

27
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Definition: Let (X, d) and (Y, ρ) be metric spaces. The function f : X → Y is uni-
formly continuous in X if for each ε > 0 ∃δ > 0 such that d(x1, x) < δ, implies that
ρ(f(x1), f(x)) < ε. Alternatively, expressed in usual terms, ∀ε > 0 ∃δ > 0 such that
∀x ∈ X, we have f(B(x, δ)) ⊂ B(f(x), ε). Very similar to the definition of the continuity!
For instance, f : (0, 1) → (1,∞) defined by f(x) = 1

x
is continuous in (0, 1) but not uni-

formly. Take ε = 1
2
, for any candidate δ > 0 we can find α| 1

n
− 1

m
| < δ but |f( 1

n
)−f( 1

m
)| > 1.

Theorem 6.2. (General Topology) Suppose X is a Hausdorff topological space. Then every
compact subset K ⊂ X is closed (in X).

Proof. Fix z ∈ X \K. For each x ∈ K there exist disjoint sets Ux and Vx, both open in X,
such that x ∈ Ux and z ∈ Vx. The collection {Ux ∩K}x∈K is an open cover of K. Since K
is compact, it has a finite subcover {Uxi

∩K}n
i=1. The finite intersection V ∗(z) = ∩n

i=1Vxi
(z)

is an open set containing z. Clearly V ∗(z) is disjoint from Uxi
(z) for all 1 6 i 6 n, so V ∗(z)

is disjoint from K. Finally, the union ∪z∈X\KV
∗(z) = X \K is open in X. �

Theorem 6.3. Suppose (X, d) and (Y, p) are metric spaces and f : X → Y is a continuous
function on X. If X is compact, then the function f is uniformly continuous on X.

Proof. Given ε > 0 we know that for each x ∈ X there is δx > 0 such that f(Bd(x, δx)) ⊂
Bρ(f(x), ε) ( we used continuity point by point where δx depends on x ). Balls {Bd(x,

δxi

2
)}x∈X

are open cover ofX and by compactness there is a finite subcover {Bd(xi,
δxi

2
)}n

i=1 (because all

δxi
will not work for all xi ’s as centers). So, we have that ∀x ∈ X ∃i such that x ∈ Bd(xi,

δxi

2
).

Set δ∗ = min{( δxi

2
) : 1 ≤ i ≤ n}. Then and Bd(x, δ∗) ⊂ Bd(xi,

δxi

2
+ δ) ⊂ Bd(xi, δi). There-

fore, f(Bd(x, δ∗) ⊂ Bρ(f(xi), ε) from where it follows that ρ(f(x), f(xi)) < ε and from these
two facts we can conclude that f(Bd(x, δ∗) ⊂ Bρ(f(x), 2ε). �
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Definition 6.4. Given metric spaces X and Y , the function f : X → Y is a homeomorphism
if f is continuous, onto and has a continuous inverse g : Y → X with g(f(x)) = x for all
x ∈ X and f(g(y)) = y for all y ∈ Y .

Such a map preserves all “topological” properties. A property of a topological space is a
topological property if it is preserved under homeomorphism.

There is a bijection between [0, 1] and [0, 1]2. Why? There exists an injection [0, 1] → [0, 1]2

and an injection [0, 1]2 → [0, 1]. The details of this second map are as follows. Write
x =

∑∞
k=0 x

k10−k with 0 ≤ xk ≤ 9 and the decimal expansion not terminating in an infinite
sequence of 9s. If x = 1 then x0 = 1 and xk = 0 for k > 0. y =

∑∞
k=0 y

k10−k with the same
properties as x above.

Define the function h : [0, 1]2 → [0, 1] by

h(x, y) = 0.x0y0x1y1 . . . =
∞∑

k=0

xk10−(2k+1) +
∞∑

k=0

yk10−(2k+2).

h : [0, 1]2 → [0, 1] is not onto, but it can be easily be verified that h is one-to-one. Then
by the Schroeder-Bernstein Theorem, there exists a bijection [0, 1] → [0, 1]2. The Peano
Curve is a function f : [0, 1] → [0, 1]2 which is onto and continuous. (Note: There is no
homeomorphism [0, 1] → [0, 1]2.)

Lemma 6.5. Suppose X is compact and f : X → Y is continuous, onto and one-to-one.
Then f is a homeomorphism.

Proof. We can define g : Y → X with g(y) = x if f(x) = y. Given an open V ⊂ X, we need
to check that g−1(V ) is open in Y . K = X \V is closed in X, hence it is compact. Therefore,
f(K) is also compact. f(K) = g−1(K). Then g−1(V ) = g−1(X \ K) = g−1(X) \ g−1(K)
which is open in Y . �

Definition 6.6. A (topological or) metric space X is path-connected if for any x, y ∈ X
there exists a path connecting them, i.e., ∃γ : [0, 1] → X, which is continuous with γ(0) = x
and γ(1) = y.

Clearly, Rk and [a, b] are connected. More generally, if K ⊂ R` is convex, it is path-
connected. K is convex if for all x, y ∈ K and for all t ∈ [0, 1], γ(t) = ty + (1− t)x ∈ K.

Definition 6.7. A set K ⊂ X is called clopen if it is closed and open in X.

Definition 6.8. X is connected if the only clopen sets in X are ∅ and X.

Equivalently, X is connected if and only if for any partition X = V1∪V2 of X into two open
and disjoint sets, one of them is ∅. For instance, Q = {x ∈ Q : x <

√
2} ∪ {x ∈ Q : x >

√
2}

and thus Q is not connected.
29
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Fact 6.9. For a < b ∈ R, [a, b] is connected.

Proof. Suppose K ⊂ [a, b] is clopen in [a, b] and K 6= ∅, K 6= [a, b]. If a ∈ K, let s = supK ⊂
[a, b]. Then s ∈ K because K is closed. We have three cases:

(1) Suppose s = a. This is impossible because we know, since K is open, that there
exists ε > 0 such that [a, a+ ε) ⊂ K.

(2) Suppose s < b. This is impossible because we know, since K is open, that there
exists ε > 0 such that [s, s+ ε) ⊂ K.

(3) Suppose s = b. This implies that b ∈ K. To get a contradiction, we examine supKc.
(a) Suppose supKc < b. We apply the argument in (2) and reach a contradiction.
(b) Suppose supKc = b. Then b ∈ Kc. But b ∈ K, so we have a contradiction.

�

Theorem 6.10. Suppose that X is path-connected. Then X is connected.

Proof. Assume X is not connected. Suppose X = V1 ∪ V2 with V1, V2 open, disjoint and
nonempty. Let x ∈ V1, y ∈ V2. We find γ : [0, 1] → X with γ continuous and γ(0) = x and
γ(1) = y. Then [0, 1] = γ−1(V1) ∪ γ−1(V2) is a disjoint union of open sets and nonempty
since 0 ∈ γ−1(V1) and 1 ∈ γ−1(V2). This is a contradiction since [0, 1] is connected (meaning
one of γ−1(V1) and γ−1(V2) has to be empty.) �

Fact 6.11. [0, 1] and the circle C = {(x, y) ∈ R2|x2 + y2 = 1} are not homeomorphic.

Proof. [0, 1]\ 1
2

is not connected, nor path-connected, since it is a disjoint union of open sets,
but C \ {z} is connected for any z. T see this, let z = (cos θ, sin θ). Then define γ̃(t) =
(cos(θ + t), sin(θ + t)), 0 ≤ t ≤ 2π. Suppose γ̃(t0) = u and γ̃(t1) = v. γ̃ : [t0, t1] → C \ {z}.
γ̃ can then be tweaked to a γ that satisfies our requirements. �

Fact 6.12. If X is connected and f : X → Y is continuous and onto, then Y is connected.

Proof. If K is clopen in Y then D = f−1(K) is clopen in X. If D = ∅ then K = ∅ while if
D = X then K = Y . �

7. Homework

(1) For each of the following spaces decide if it compact, complete and/or connected.
(a) {(x, y) ∈ R2 : xy ≥ 1} ⊂ R2.
(b) {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} ⊂ R3.
(c) {(0, y) ∈ R2 : −1 ≤ y ≤ 1} ∪ {(x, sin 1

x
) : 0 ≤ x ≤ 1

π
} ∈ R2.

(2) Prove that [0, 1]2 is not homeomorphic to [0, 1].
(3) Prove that [0, 1]2 is not homeomorphic to the circle C (above).
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Example 13.1: For A,B ⊂ Rn write A + B = {a + b | a ∈ A, b ∈ B}. Which of the
following are true?

• A,B are compact ⇒ A+B is compact.
• A is compact, B is closed ⇒ A+B is closed.
• A,B are closed ⇒ A+B is closed.

Note: A×B = {(a, b) | a ∈ A, b ∈ B}.

Proof of Part I: If xn is a sequence in A + B, write, xn = an + bn. By compactness of
A,B, we can find a common subsequence nk such that ank

→ a ∈ A and bnk
→ b ∈ B. Then

xnk
→ a+ b ∈ A+B. Thus A+B is sequentially compact and hence compact.

Proof of Part II: Let xn ∈ A+B and xn → x. We want to show that x ∈ A+B. Write
xn = an + bn. Then by compactness of A, we can find a subsequence such that ank

→ a ∈ A.
Then using an+bn → x, we find that bnk

also converges, say to b. Because B is closed, b ∈ B.
Thus (ank

, bnk
) → (a, b) ∈ A×B. Hence xn → a+ b. This means that x = a+ b ∈ A+B.

Theorem 7.1. (Tychonov’s theorem) If {Xα}α∈J are compact topological spaces, then the
product

∏
α∈J Xα is compact.

Counterexample to Part III: Consider the closed subsets of Rn: A = {(x, y) : xy ≥ 1},
B = {(0, y) : y ∈ R}. Then the set A+B = R2 \B, which is not closed.

Alternate proof of Part I: We know that f : X → Y is continuous and X is compact,
then f(X) is compact. Define the map f : X ×Y → X +Y : f(a, b) → a+ b. Since addition
is continuous, X + Y is compact.

Example 13.2: Let’s try to prove Part II using open covers. We want to show that
(A + B)c is open. Suppose z /∈ A + B. Our goal is then to find an ε > 0 such that
∀a ∈ A,B(z, ε) ∈ (A+B)c is not in the closed set a+B. Since a+B is closed, its comple-
ment is open. Thus, there exists an εa such that B(z, εa) ⊂ (a + B)c, and d(z, a + B) ≥ εa,
which can be rewritten as follows: d(z, a + B) ≥ εa ⇒ |z − (a + b)| ≥ εa ⇒ |(z − b) + a| ≥
εa ⇒ d(z −B, a) ≥ εa. So z −B is disjoint from B(a, εa).
We have found an open cover {B(a, εa

2
)}, so it remains to prove existence of a finite sub-

cover. Let ε = min1≤i≤N B(a, εa

2
). ∀a ∈ A, find ai with a ∈ B(ai,

εa

2
) such that |z− (a+ b)| ≥

|z − (ai + b)|︸ ︷︷ ︸
≥εai

− |a− ai|︸ ︷︷ ︸
≤ εai

2

≥ εai

2
≥ ε.

Theorem 13.2: Let V ⊂ Rn be open in Rn and connected. Then V is path-connected.
Proof : Suppose x ∈ V . Let W = {y ∈ V : ∃ path connecting x to y in V }. x ∈ W , so

31
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W 6= ∅. Also, W is open: y ∈ W ⇒ ∃ε > 0 : B(y, ε) ⊂ V , but that means that B(y, ε) ⊂ W ,
since balls are path-connected.
V \W is open: If y ∈ V \W , then ∃δ > 0 such that B(v, δ) ⊂ V . Then B(v, δ) ⊂ V \W
because if there is a path x→ u ∈ B(v, δ), then we can get a path x→ v. Connectedness of
V implies that the only clopen sets in V are ∅ and V . But W ⊂ V is open, so V \W must
be closed, and since W is nonempty, V \W must necessarily be ∅.
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Definition 7.2. Given A ⊂ X,X a metric space. The interior A◦of A, is the set {x ∈ A :
∃ε > 0 with B(x, ε) ⊂ A}

If A is open in X, then A◦ = A.

Fact 7.3. A◦ = (Ac)c check!

Definition 7.4. The boundary of A is ∂A = A \ A◦ = {x ∈ X : ∀ε > 0 B(x, ε) intersects
both A and Ac}

Example 7.5. In R, ∂(a, b) = ∂(a, b] = ∂[a, b] = {a, b}

Definition 7.6. Let V be an open set in Rd. We call a continuous function u : V → R
harmonic in V , if ∀x ∈ V and r > 0, if B(x, r) ⊂ V then

u(x) =

d︷ ︸︸ ︷∫
· · ·

∫
B(x,r)

u(y)dy

∫
· · ·

∫
B(x,r)

1dy
.

In one dimension we get u(x) =
R x+r

x−r u(y)dy

2r
. All the Harmonic functions are linear in R,

i.e., u(x) = ax+ b, u′′ = 0.
In R2 \ {0} u(x) = log |x| is harmonic.
In R3 \ {0} u(x) = |x|−1 is harmonic.
In general u harmonic ⇔ ∆u =

∑
i uxixi

= 0

Definition 7.7. A point x ∈ V is called a local maximum of f : V → R if ∃r > 0 with
f(x) = max f

B(x,r)

Fact 7.8. For a harmonic function u, if it has a local maximum at x then it is constant on
some ball B(x, r)

Suppose V ⊂ Rn is open and bounded, u : V → R continuous and whenever u(x) =
max{u(y) : y ∈ B(x, r)} (where B(x, r) ⊂ V ), then u(x) = u(y) ∀y ∈ B(x, r)
−u has the same property: if u(x) = min

B(x,r)
u(y), then u(y) = u(x) for all B(x, r).

Claim 7.9. If u|∂v ≡ 0 it follows that u ≡ 0 in all of V .
33
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Proof. u has a local maximum on V , u(x0) = maxu. Our goal now is to show u ≤ 0 on
V . So if x0 ∈ ∂V we are done. If x0 ∈ V then it is also a local maximum so u(y) = u(x0)
∀y ∈ B(x0, r) for some r > 0. Next suppose V is connected, Then V = V1∪V2, V1 = {x ∈ V :
u(x) = u(x0)}, V2 = {x ∈ V : u(x) < u(x0)} = u−1{(−∞, u(x0))} These sets are both open.
If V is connected this forces V2 = ∅. If V is not connected, apply this to each connected
component of V .

The same argument applied to −u shows −u ≤ 0 on V ⇒ u = 0 on V . �

connected components

path connected components. Say x ∼ y if there is a path from x to y. Then ∼ is an
equivalence relation because it satisfies:
(i) x ∼ x Reflexive
(ii) x ∼ y ⇔ y ∼ x Symmetric
(iii) If x ∼ y and y ∼ z then x ∼ z Transitive

Let Cpath(x) = {y : y ∼ x}, then it is path connected and has property (2).

Corollary 7.10. For an open set V ⊂ Rn all the path connected components are open. In
particular every open V ⊂ Rn can be written as a disjoint union of open intervals. We allow
(a,∞), (−∞,∞), (−∞, b), (a, b).

Proof. ∀x ∈ V we need to check Cpath is open. y ∈ Cpath ⇒ ∃r > 0 st B(y, r) ⊂ V . Then
for any z ∈ B(y, r), by taking a path from x to y and then taking a straight line path from
y to z, we see that B(y, r) ⊂ Cpath. �

Application: Suppose K ⊂ R is closed and f : K → R is continuous, then ∃f̃ : R → R
that is continuous and extends f . Extends means f̃ |K = f

Proof. Let Kc =
N⊔

i=1

(ai, bi) where N could be ∞. If ai = −∞. Let f̃(x) = f(bi) on (−∞, bi)

If bi = ∞. Let f̃(x) = f(ai) on (ai,∞) If ai, bi ∈ R and ai < x < bi write x = (1− t)ai + tbi
for some t ∈ (0, 1). Let f̃(x) = (1− t)f(ai) + tf(bi). Check f̃ continuous at x ∈ R. If x ∈ Kc

it is fine because linear functions are continuous. If x ∈ K, then ∀ε > 0, ∃δ such that

f(Bk(x, δ)) ⊂ B(f(x), ε) ⇒ f̃(BR(x, δ)) ⊂ B(f(x), ε). ai < y < bi ⇒ f(ai) < f̃(y) < f(bi) If
ai and bi are both in a ball use continuity of linear functions to finish. �



Math H104: Honors Introduction to Analysis Fall 2005

Lecture 15: October 18
Lecturer: Yuval Peres Scribe: Brian Shotwell

Lemma 7.11. Suppose {Kα}α∈J are connected sets in X, where x ∈ Kα for all α ∈ J for
some point x ∈ X. Then K =

⋃
α∈K Kα is connected.

Proof. Suppose K ⊂ V1 ∪ V2, where Vi are open in X and disjoint in K (that is, (V1 ∩K) ∩
(V2 ∩K) = ∅). Then K = (K ∩ V1) t (K ∩ V2), a union of 2 disjoint sets that are open in
K. We need to show K ∩ V1 or K ∩ V2 is empty.

Either x ∈ V1 or x ∈ V2. Without loss of generality, suppose that x ∈ V1. Then for
all α, Kα = (V1 ∩ Kα) t (V2 ∩ Kα) =⇒ V2 ∩ Kα = ∅ (since Kα is connected). Hence
∅ =

⋃
α∈J(V2 ∩Kα) = V2 ∩K. �

Definition 7.12. Let X be a metric space and suppose A ⊂ X. For each x ∈ A the connected
component CA(x) of x in A is

CA(x) =
⋃

α∈K

Kα, where x ∈ Kα ⊂ A; Kα connected.

We claim the following facts about connected components:
a. CA(x) is connected.
b. CA(x) is the maximal connected set in A that contains x.
c. For all x, y ∈ A either CA(x) = CA(y) or CA(x) ∩ CA(y) = ∅.

Proof. a. This is true by the above lemma.
b. If D ⊂ A, x ∈ D, and D connected, then CA(x) ⊃ D (by definition).
c. If CA(x) ∩ CA(y) = ∅ we are done. Otherwise, there exists z ∈ CA(x) ∩ CA(y). By

the lemma CA(x) ∪ CA(y) is connected. By the maximality of CA(x) and CA(y), CA(x) =
CA(x) ∪ CA(y) = CA(y). �

Example 7.13. A closed, connected set in R2 that is not path-connected:

K =

{
(x, sin

(
1

x

)
) : 0 < x ≤ 1

π

}
t {(0, y) : −1 ≤ y ≤ 1} = G t L.

We claim that K is

(1) Closed.
(2) Connected.
(3) Not path-connected.

Proof. 1. Suppose (xn, yn) → (x, y) and (xn, yn) ∈ K. We need to show (x, y) ∈ K. If
x = 0, then y ∈ [−1, 1] (and we are done). If x 6= 0 then by continuity of sin, it follows that
if 1

xn
→ 1

x
, then sin( 1

xn
) → sin( 1

x
). Hence, y = sin( 1

x
) and thus (x, y) ∈ K, and we are done.

2. K = G t L. Clearly G,L are connected (they’re even path-connected). Suppose K ⊂
35
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V1 ∪ V2, where V1, V2 are open in R2 and V1 ∩ V2 ∩K = ∅. V1 and V2 cannot both intersect
G, and V1 and V2 cannot both intersect L (because they are disjoint).

If both V1∩K and V2∩K are nonempty, one of them must be G and the other L. Without
loss of generality, G = V1∩K and L = V2∩K. (0, 0) ∈ V2 =⇒ there exists an ε > 0 such that
B((0, 0), ε) ⊂ V2. But ( 1

πn
, 0) ∈ G ⊃ V1 for all n. This gives a contradiction when 1

πn
< ε (as

this implies that ( 1
πn
, 0) ∈ V1 ∩ V2 ∩K).

3. Proof by contradiction: suppose there is a path φ : [0, 1] → K, satisfying φ(0) = (0, 0),
φ(1) = ( 1

π
, 0), φ continuous.

Let t0 = inf{t : φ1(t) > 0} where φ(t) = (φ1(t), φ2(t)). Also, let t1 = sup{t : φ1(t) = 0} =
sup φ−1

1 (0) = sup φ−1(L) = max φ−1(L). φ1(t1) = 0, φ(t1) ∈ L (note we can replace the
supremum with the maximum element because L is closed). We will choose to work with t1
in the remainder of the proof, although one could use t0.

By continuity of φ at t1, there exists a δ > 0 so that φ
(
B[0,1](t1, δ)

)
⊂ B(φ(t1), 1/2).

Either φ2(t1) ≥ 0 or φ2(t1) < 0: both cases are similar.
Suppose φ2(t1) ≥ 0. Then φ2(t1, t1 + δ) does not contain −1. φ(t1 + δ/2) is connected by

a path to φ(t1) ∈ L. Write φ(t1 + δ/2) = (x1, y1). Next, find a k with 0 < 1
(2k−1/2)π

< x1.

We get a contradiction because K \ {( 1
(2k−1/2)π

, 0)} is disconnected, a union of 2 relatively

open sets and we have a path from one to the other.
If φ2(t1) < 0, work with 1

(2k+1/2)π
, and the proof is complete.

�
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8. Outline

This document presents a transcription of the October 20th lecture. §9 contains the solu-
tions for several problems from the practice midterm, while §10 presents the proof that any
metric space is contained in a suitably, to be defined, unique, complete metric space.

9. Practice Midterm

Problem 9.1. Show that Card(R) = Card(R \Q).

The most direct way is to find an explicit bijection, without using the Schroeder-Bernstein
theorem. Let D be a denumerable subset of R\Q, for example D = Q+

√
2 suffices because

if there were a rational number in this set then
√

2 would be rational, being the sum of
two rationals, an impossibility. We can enumerate D ∪Q with D because the union of two
countable sets is countable, so by composing bijections with N we get a bijection φ : D →
D ∪ Q. Now we can define a bijection f : R \ Q → R, by f |D = φ and f |R\(D∪Q) = id. We
see that f as the disjoint union of these two restrictions defines a bijective function because
each restriction is a bijection. Thus the two sets in question are in bijective correspondence,
implying that they have equal cardinality.

Problem 9.2. Find a continuous function f : R2 → R2 such that there exists a closed set
A ⊂ R2 with f(A) not closed.

Consider the function f : R2 → R2 defined by f(x, y) = (ex, ey). This is a continuous
function that maps R2 onto (0,∞)2. Now let A = R2, this is a closed set, but (0, 0) /∈ f(A)
is a limit point of f(A), so f(A) is not closed.

Problem 9.3. Show that C[0, 1] is connected, with the metric defined by the max norm.

We show that C[0,1] is path-connected. Indeed it is convex: For t ∈ [0, 1] and f, g ∈ C[0, 1],
the function (1−t)f+tg is also in C[0, 1]. Thus γ : [0, 1] → C[0, 1] given by γ(t) = (1−t)f+tg,
satisfies γ(0) = f and γ(1) = g, i.e.,it is a path from f to g. (The simplicity of this proof
may come as a frustration to those of you (such as the scribe) who proved directly that
C[0,1] had no proper, clopen subsets).

Problem 9.4. Find a continuous, bounded function f : (0, 1) → R, which is not uniformly
continuous.

Take the function f : x 7→ sin(π
x
). f ((0, 1)) ⊂ B(0, 2), so f is bounded. Then for ε = 1/2,

assume there exists a δ satisfying the hypothesis of uniform continuity. Now find an even
n ∈ N and an odd m ∈ N, such that | 1

n+ 1
2

− 1
m+ 1

2

| < δ, let x1 = 1
n+ 1

2

and x2 = 1
m+ 1

2

. Such

m, n obviously exist for any δ > 0, but |f(x1)− f(x2)| = 2 > ε, a contradiction. So f is not
uniformly continuous despite being continuous on (0,1) (it is differentiable on (0,1)).
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10. Metric Space completion

We first consider the question of when a continuous function f : (0, 1) → R can be

extended to a continuous function on (0, 1) = [0, 1].

Proposition 10.1. There is such an extension of f if and only if f is uniformly continuous.

Proof. Because [0, 1] is compact, clearly uniform continuity is necessary. The reverse direc-
tion requires more work. We assume f : (0, 1) → R is uniformly continuous and construct

a continuous extension f̃ : [0, 1] → R, by f̃(1) = limn→∞ f(xn), where (xn) is a sequence

converging to 1. Now we know that f̃(1) exists because f is uniformly continuous so (f(xn))
is Cauchy in R and therefore converges, now we must show that the definition is well defined.
Let (xn), (yn) be two sequences converging to 1, then the sequence (zn), where z2m = xm

and z2m−1 = ym, also converges to 1. Now, (f(zn)) converges to some value, but it has two
convergent subsequences (f(xn)), (f(yn)), so these must converge to the same value as the
mother sequence. Thus lim f(xn) = lim f(yn) and our definition is independent of the choice
of sequence converging to 1. Now do the same thing for 0 and we have a continuous function

on [0, 1], because f̃(limxn) = lim f̃(xn) for every convergent sequence (xn) in [0, 1]. �

Also we shall need the following definition.

Definition 10.2. A map ψ : X → X ′, where X and X ′ are metric spaces with metrics d
and d′, respectively, is an isometry if d′(ψ(x), ψ(y)) = d(x, y) for every x, y ∈ X.

Clearly, such a map is (uniformly) continuous, just let δ = ε. With these facts in mind we
proceed to the main theorem of this lecture. The only real difficulty in the following theorem
is in discovering that it is true and stating its hypotheses and results rigorously.

Theorem 10.3 (Completion). Given a metric space (X,d), there always exists a complete

metric space (X̃, d̃), where X ⊂ X̃ and d(x,y)=d̃(x, y) for every x, y ∈ X, and X̃ = X in

X̃. Moreover, X̃ is unique in the following sense: if (X∗, d∗) also has these properties, then

there exists a surjective isometry ψ : X̃ → X∗ such that ψ|X = id. Finally, given Y complete

and f : X → Y uniformly continuous, then f extends to a continuous function f̃ : X̃ → Y .

Proof. Define X̃0 to be the set of equivalence classes of cauchy sequences in X, where (xn) ∼
(yn) if d(xn, yn) → 0. Denote the elements of X̃0 as [(xn)], where (xn) is a representative of

an equivalence class. Now define X̃ as follows:

X̃ = X
⋃
{[(xn)] ∈ X̃0 : (xn) is a non-converging Cauchy sequence in X}

Define d̃0 in X̃0 by letting x = [(xn)], y = [(yn)] ∈ X̃ \ X and d̃0(x, y) = lim d(xn, yn).
Such a metric is always defined because R is complete and it is well-defined by the same
argument as in the previous proposition applied to two distinct representatives of the same

equivalence class. We can define d̃ on X̃ by letting it equal the obvious metric when x and

y are both in X, or both in X̃0 and d̃(x, [(yn)]) = lim d(x, yn) when this is not the case.

Similarly, this definition is valid and well-defined for every x, y ∈ X̃. We have that X = X̃

in X̃ because the set of accumulation points of X in X̃ is just X̃ \ X and the union of X
and its accumulation points is X.
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Now we must check uniqueness of X̃. Given X∗, define ψ0 : X̃0 → X∗ by ψ0 : [(xn)] 7→
limxn (Here lim denotes limit in X∗). This is an isometry by the definition of X̃0 and maps

onto X∗ because X = X∗ in X∗. Also, it is clear that X̃ and X̃0 are isometric, so to get an

isometric surjection ψ : X̃ → X∗ we can compose ψ0 with this isometry.
Given a complete metric space Y and a uniformly continuous function f : X → Y , we

can define a continuous extension, f̃ , as follows: f̃ : X̃ → Y , by f̃ : [(xn)] 7→ lim f(xn)

and f̃ |X = f . These values always exist in Y because Y is complete and f is uniformly

continuous, and it is well defined by the same argument as previous proposition. Also, f̃ is
continuous by the sequence definition of continuity. �



Midterm: mathematics H104 - Oct 25, 2005

Instructor: Yuval Peres Duration: 75 minutes.

Instructions: Please write your name on every page. This examination contains four
problems with weight 34 points each. Solve three of them. Write each answer very clearly
below the corresponding question. (Use back of page if needed). Good Luck!

(1) Let f : R2 → R be the sum function, f(x, y) = x + y. For each of the following
statements, provide a counterexample if it is false and a proof if it is true.
(a) If A ⊂ R2 is complete then so is f(A).
(b) If A ⊂ R2 is connected then so is f(A).
(c) If A ⊂ R2 is open in R2 then f(A) is open in R.
(d) If E ⊂ R is complete then f−1(E) is complete.
(e) (*) If E ⊂ R is connected then f−1(E) is connected.

(2) Let f : [0, 1] → R be a function, and let Gf = {(x, f(x)) : x ∈ [0, 1]} be its graph.
(a) Show that if f is continuous then Gf is closed in R2.
(b) Give an example of a discontinuous function f : [0, 1] → R such that its graph

is closed in R2.
(c) Does there exist an example f as in part (b) that is also bounded? (If so, provide

one.)
(3) Show that if Y is a sequentially compact subset of a metric space X then Y is closed

in X.
(4) Let X be an infinite, connected metric space. Show that X is not countable.

40
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Math H104: Honors Introduction to Analysis Fall 2005

Lecture 17: October 27
Lecturer: Yuval Peres Scribe: Jacob Porter

This lecture is devoted to midterm solutions.

(1) For f : R2 → R, defined by f(x, y) = x + y prove whether or not the following are
true or false.
(a) A complete and A ⊂ R2 =⇒ f(A) is complete.
(b) A connected =⇒ f(A) connected.
(c) A open =⇒ f(A) open.
(d) E complete and E ⊂ R =⇒ f−1(E) complete.
(e) Bonus points: E connected and E ⊂ R =⇒ f−1(E) connected.

Solution
(a) False. Let A = {(x, y)|x ≤ 0, x2 − y2 = 1}. The set A is closed, but 0 /∈ f(A).

For x+ y = r, x− y = 1
r
, x =

r+ 1
r

2
, and y =

r− 1
r

2
, any positive r is in f(A).

(b) True. Theorem 2.45 says that for every continuous function this is true.
(c) True. Suppose r ∈ f(A), so r = x+y with x, y ∈ A. Is there some ε > 0 such that

(r−ε, r+ε) ⊂ f(A)? We know there exists δ > 0 such that B((x, y), δ) ⊂ A, and
(r− δ, r+ δ) ⊂ f(B((x, y), δ)). Why? Consider some point r+α ∈ (r− δ, r+ δ),
then |α| < δ, f(x+ α

2
, y + α

2
) = r + α, and ‖(x+ α

2
, y + α

2
)− (x, y)‖2 = α√

2
< δ.

Thus, (r − δ, r + δ) ⊂ f(A).
(d) True. In R and R2 this is the same as if the set is closed. Then note that by

continuity of f , f−1(V ) is opn for any open V . Since f−1(V )c = (f−1(V ))c the
same holds for closed sets.

(e) True. Suppose f−1(E) ⊂ V1 ∪ V2 and V1, V2 open and V1 ∩ V2 = ∅. Then
E ⊂ f(V1) ∪ f(V2) because f is onto R. Check that f(V1) ∩ f(V2) ∩ E = ∅ and
then we are done. Suppose not. Then there exists r ∈ f(V1)∩f(V2)∩E. This is
impossible because then f−1(r) = {(x, y) ∈ R2 : x+y = r} with f−1(r)∩V1∩V2 6=
∅, but a line is path-connected; hence connected, a contradiction.

(2) For f : [0, 1] → R and its graph Gf = {(x, y) ∈ f} do the following:
(a) If f is continuous does this imply that the graph Gf is closed?
(b) Find an example of f that is discontinuous and that the graph Gf is closed.
(c) Is there an example as in (b) that is also bounded? If not why not? If so, provide

an example.

Solution
(a) True. Gf 3 (xn, yn) → (x, y). By continuity, yn = f(xn) → f(x). d(y, f(x)) ≤

d(y, yn) + d(yn, f(x)) → 0. So, 0 = d(y, f(x)), and y = f(x).
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(b) f(x) =

{
1
x

x 6= 0
5 x = 0

If xn 9 0 then (x, y) ∈ Gf . If xn → 0 then yn →∞, a contradiction. If xn = 0
then for some point, yn = 5.

(c) No. Suppose f is bounded, and Gf is closed. Check continuity. xn → x. Need
f(xn) → f(x). If not there exists ε > 0 such that |f(xnk

) − f(x)| ≥ ε and
nk is increasing. (xnk

, ynk
) ∈ Gf , which is compact because Gf is closed and

bounded. Thus, there exists kj increasing such that (xnkj
, ynkj

) → (x∗, y∗) ∈ Gf .

x∗ = x and y∗ = f(x). However, ynkj
= f(xnkj

), and |ynkj
− f(x)| ≥ ε. This is a

contradiction because ynkj
should be converging to f(x). (It is typical of proofs

like this with compact sets to show this by contradiction).
(3) Prove that if Y ⊂ X and if Y is sequentially compact then Y is closed in X.

Solution Suppose (yn) ∈ Y and (yn) → z. Need to show that z ∈ Y . By sequential
compactness there exists nk increasing such that ynk

→ y ∈ Y , but since (ynk
) is a

subsequence, then (ynk
) → z and z = y. Thus, z ∈ Y as required.

(4) X is an infinite and connected metric space. Show X uncountable.

Solution The proof is by contradiction. SupposeX is countable. X = {xj}∞j=1. Goal:

Find r > 0 with B(x1, r) = B̄(x1, r) = {z ∈ X : d(z, x1) ≤ r}. Any r /∈ {d(x1, xj)}
will do provided that r > 0 and r < d(x1, x2).

Second Midterm: math H104 - Nov 8, 2005

Instructor: Yuval Peres Duration: 75 minutes.

Instructions: Please write your name on every page. This examination contains four
problems with weight 34 points each. Solve three of them. Write each answer very clearly
below the corresponding question. (Use back of page if needed). Good Luck!

(1) Prove that [0, 1] is uncountable.
(2) Let (X, d) be a metric space.

(a) Define what it means for X to be totally bounded.
(b) Is the open interval (0, 1), with the usual metric, totally bounded? Prove your

answer from the definition without using any theorems.
(c) Is there a metric space (X, d) where d(x, y) < 1 for all x, y ∈ X yet X is not

totally bounded ? Explain your answer.
(3) For each of the following statements, determine if it is true or false, and explain

briefly.
(a) If X is a finite nonempty metric space, then all subsets of X are clopen sets in

X.
(b) If X is a countable nonempty metric space, then there exists some x ∈ X such

that the one-point set {x} is clopen in X.
(c) If an open set V in R contains all the rationals, then V = R.
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(d) If K is a closed uncountable set in R, then there exist a < b in R such that
[a, b] ⊂ K.

(4) Let (X, d) and (Y, ρ) be metric spaces. Suppose that the function f : X → Y is
continuous onto Y and that X is compact. Prove that Y is also compact (Use the
covering definition).


